Deep Online Convex Optimization with Gated Games

نویسنده

  • David Balduzzi
چکیده

Methods from convex optimization are widely used as building blocks for deep learning algorithms. However, the reasons for their empirical success are unclear, since modern convolutional networks (convnets), incorporating rectifier units and max-pooling, are neither smooth nor convex. Standard guarantees therefore do not apply. This paper provides the first convergence rates for gradient descent on rectifier convnets. The proof utilizes the particular structure of rectifier networks which consists in binary active/inactive gates applied on top of an underlying linear network. The approach generalizes to max-pooling, dropout and maxout. In other words, to precisely the neural networks that perform best empirically. The key step is to introduce gated games, an extension of convex games with similar convergence properties that capture the gating function of rectifiers. The main result is that rectifier convnets converge to a critical point at a rate controlled by the gated-regret of the units in the network. Corollaries of the main result include: (i) a game-theoretic description of the representations learned by a neural network; (ii) a logarithmic-regret algorithm for training neural nets; and (iii) a formal setting for analyzing conditional computation in neural nets that can be applied to recently developed models of attention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Online Convex Optimization by Putting Forecaster to Sleep

Methods from convex optimization such as accelerated gradient descent are widely used as building blocks for deep learning algorithms. However, the reasons for their empirical success are unclear, since neural networks are not convex and standard guarantees do not apply. This paper develops the first rigorous link between online convex optimization and error backpropagation on convolutional net...

متن کامل

The convex optimization approach to regret minimization

A well studied and general setting for prediction and decision making is regret minimization in games. Recently the design of algorithms in this setting has been influenced by tools from convex optimization. In this chapter we describe the recent framework of online convex optimization which naturally merges optimization and regret minimization. We describe the basic algorithms and tools at the...

متن کامل

A Drifting-Games Analysis for Online Learning and Applications to Boosting

We provide a general mechanism to design online learning algorithms based on a minimax analysis within a drifting-games framework. Different online learning settings (Hedge, multi-armed bandit problems and online convex optimization) are studied by converting into various kinds of drifting games. The original minimax analysis for drifting games is then used and generalized by applying a series ...

متن کامل

Variants of RMSProp and Adagrad with Logarithmic Regret Bounds

Adaptive gradient methods have become recently very popular, in particular as they have been shown to be useful in the training of deep neural networks. In this paper we have analyzed RMSProp, originally proposed for the training of deep neural networks, in the context of online convex optimization and show √ T -type regret bounds. Moreover, we propose two variants SC-Adagrad and SC-RMSProp for...

متن کامل

Online Deep Learning: Learning Deep Neural Networks on the Fly

Deep Neural Networks (DNNs) are typically trained by backpropagation in a batch learning setting, which requires the entire training data to be made available prior to the learning task. This is not scalable for many real-world scenarios where new data arrives sequentially in a stream form. We aim to address an open challenge of “Online Deep Learning” (ODL) for learning DNNs on the fly in an on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1604.01952  شماره 

صفحات  -

تاریخ انتشار 2016